Background: The prognostic roles of clinical and laboratory markers have been exploited to model risk in patients with primary CNS lymphoma, but these approaches do not fully explain the observed variation in outcome. To date, neuroimaging or molecular information is not used. The aim of this study was to determine the utility of radiomic features to capture clinically relevant phenotypes, and to link those to molecular profiles for enhanced risk stratification.
View Article and Find Full Text PDFAims: In this retrospective study we performed a quantitative textural analysis of apparant diffusion coefficient (ADC) images derived from diffusion weighted MRI (DW-MRI) of single brain metastases (BM) patients from different primary tumors and tested whether these imaging parameters may improve established clinical risk models.
Methods: We identified 87 patients with single BM who had a DW-MRI at initial diagnosis. Applying image segmentation, volumes of contrast-enhanced lesions in T1 sequences, hyperintense T2 lesions (peritumoral border zone (T2PZ)) and tumor-free gray and white matter compartment (GMWMC) were generated and registered to corresponding ADC maps.
Introduction: In this post hoc analysis we compared various response-assessment criteria in newly diagnosed glioblastoma (GB) patients treated with tumor lysate-charged autologous dendritic cells (Audencel) and determined the differences in prediction of progression-free survival (PFS) and overall survival (OS). Methods: 76 patients enrolled in a multicenter phase II trial receiving standard of care (SOC, n = 40) or SOC + Audencel vaccine (n = 36) were included. MRI scans were evaluated using MacDonald, RANO, Vol-RANO, mRANO, Vol-mRANO and iRANO criteria.
View Article and Find Full Text PDF