The majority of ovarian cancer patients are treated with platinum-based chemotherapy, but the emergence of resistance to such chemotherapy severely limits its overall effectiveness. We have shown that development of resistance to this treatment can modify cell signaling responses in a model system wherein cisplatin treatment has altered cell responsiveness to ligands of the erbB receptor family. A cisplatin-resistant ovarian carcinoma cell line PE01CDDP was derived from the parent PE01 line by exposure to increasing concentrations of cisplatin, eventually obtaining a 20-fold level of resistance.
View Article and Find Full Text PDFMicrocell-mediated transfer of normal chromosome 11 (chr 11) to a clonal derivative of the ovarian cancer cell line, OVCAR3, was performed and generated independent hybrids with a common set of phenotypes: inhibition of cell growth and of cellular migration in vitro; and inhibition of tumor growth in vivo. Differential display reverse transcriptase-PCR (RT-PCR), cDNA-representational difference analysis, and hybridization of cDNA high-density filter arrays identified altered mRNAs associated with these phenotypic alterations. Quantitative RT-PCR-based validation of each altered mRNA eliminated false positives to identify a reduced set of expression differences.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC), the leading cause of death from gynecological malignancy, is a poorly understood disease. The typically advanced presentation of EOC with loco-regional dissemination in the peritoneal cavity and the rare incidence of visceral metastases are hallmarks of the disease. These features relate to the biology of the disease, which is a principal determinant of outcome.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the most common cause of death from gynaecological malignancy. Resistance to platinum chemotherapy is a major reason for treatment failure and poor prognosis. The human homeobox gene BARX2 is located within a minimal region at 11q25 that is associated with frequent loss of heterozygosity (LOH) and adverse survival in EOC.
View Article and Find Full Text PDFThe human homeobox BARX2 is located at 11q24-q25, within a minimal region associated with frequent loss of heterozygosity and adverse survival in epithelial ovarian cancer. BARX2 is a transcription factor that regulates transcription of specific cell adhesion molecules in the mouse. We show that BARX2 and cadherin 6 are expressed in normal human ovarian surface epithelium.
View Article and Find Full Text PDF