Publications by authors named "G J Mavrothalassitis"

Heterozygous deleterious null alleles and specific missense variants in the DNA-binding domain of the ETS2 repressor factor (ERF) cause craniosynostosis, while the recurrent p.(Tyr89Cys) missense variant is associated with Chitayat syndrome. Exome and whole transcriptome sequencing revealed the ERF de novo in-frame indel c.

View Article and Find Full Text PDF

In the majority of downstream analysis pipelines for single-cell RNA sequencing (scRNA-seq), techniques like dimensionality reduction and feature selection are employed to address the problem of high-dimensional nature of the data. These approaches involve mapping the data onto a lower-dimensional space, eliminating less informative genes, and pinpointing the most pertinent features. This process ultimately leads to a reduction in the number of dimensions used for downstream analysis, which in turn speeds up the computation of large-scale scRNA-seq data.

View Article and Find Full Text PDF

ETS2 repressor factor () insufficiency causes craniosynostosis (CRS4) in humans and mice. ERF is an ETS domain transcriptional repressor regulated by Erk1/2 phosphorylation via nucleo-cytoplasmic shuttling. Here, we analyze the onset and development of the craniosynostosis phenotype in an Erf-insufficient mouse model and evaluate the potential of the residual Erf activity augmented by pharmacological compounds to ameliorate the disease.

View Article and Find Full Text PDF

Thymocyte differentiation and lineage commitment is regulated by an extensive network of transcription factors and signaling molecules among which Erk plays a central role. However, Erk effectors as well as the molecular mechanisms underlying this network are not well understood. Erf is a ubiquitously expressed transcriptional repressor regulated by Erk-dependent phosphorylation.

View Article and Find Full Text PDF

Several imaging techniques are used in biological and biomedical studies. Micro-computed tomography (micro-CT) is a non-destructive imaging technique that allows the rapid digitisation of internal and external structures of a sample in three dimensions and with great resolution. In this review, the strengths and weaknesses of some common imaging techniques applied in biological and biomedical fields, such as optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy, are presented and compared with the micro-CT technique through five use cases.

View Article and Find Full Text PDF