In theory, a late winter-early spring calving date in temperate grazing systems best matches pasture supply and herd demand, thereby minimizing the need for nonpasture feeds and maximizing profitability. We used a quantitative case study approach to define the effects of season of calving on biophysical and financial performance in a grazing system without the confounding effects of imported feeds (i.e.
View Article and Find Full Text PDFThe New Zealand dairy industry produces approximately 17% of this country's total greenhouse gas emissions (GHG-e) and it is also this nation's largest export industry. The industry needs to reduce GHG-e under proposed policy directives and for ongoing market security. Given these pressures, there is the need to identify cost-effective management strategies to reduce on-farm GHG-e.
View Article and Find Full Text PDFOptimization models are a key tool for the analysis of emerging policies, prices, and technologies within grazing systems. A detailed, nonlinear optimization model of a New Zealand dairy farming system is described. This framework is notable for its inclusion of pasture residual mass, pasture utilization, and intake regulation as key management decisions.
View Article and Find Full Text PDF