Publications by authors named "G J Carven"

Inhibitors of the transforming growth factor-β (TGF-β) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-β homologs has safety liabilities. TGF-β1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-β-binding proteins (LTBPs) present TGF-β1 in the extracellular matrix, and TGF-β1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33).

View Article and Find Full Text PDF

Since the first approval of the anti-CD3 recombinant monoclonal antibody (mAb), muromonab-CD3, a mouse antibody for the prevention of transplant rejection, by the US Food and Drug Administration (FDA) in 1986, mAb therapeutics have become increasingly important to medical care. A wealth of information about mAbs regarding their structure, stability, post-translation modifications, and the relationship between modification and function has been reported. Yet, substantial resources are still required throughout development and commercialization to have appropriate control strategies to maintain consistent product quality, safety, and efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Antibody therapy requires careful balance of factors like binding affinity, biophysical traits, and immunogenicity risk to be effective.
  • High concentrations (>150 mg/ml) of antibodies are needed for subcutaneous dosing, but high viscosity at those concentrations can complicate delivery and manufacturing.
  • This study successfully optimized an anti-PDGF-BB antibody to increase its concentration from 80 mg/ml to over 160 mg/ml while keeping its binding affinity intact, by adjusting its surface charge properties and analyzing 40 unique variants for viscosity.
View Article and Find Full Text PDF

The programmed cell death 1 (PD-1) pathway represents a major immune checkpoint, which may be engaged by cells in the tumor microenvironment to overcome active T-cell immune surveillance. Pembrolizumab (Keytruda®, MK-3475) is a potent and highly selective humanized mAb of the IgG4/kappa isotype designed to directly block the interaction between PD-1 and its ligands, PD-L1 and PD-L2. This blockade enhances the functional activity of T cells to facilitate tumor regression and ultimately immune rejection.

View Article and Find Full Text PDF

Despite breakthroughs achieved with cancer checkpoint blockade therapy (CBT), many patients do not respond to anti-programmed cell death-1 (PD-1) due to primary or acquired resistance. Human tumor profiling and preclinical studies in tumor models have recently uncovered transforming growth factor-β (TGFβ) signaling activity as a potential point of intervention to overcome primary resistance to CBT. However, the development of therapies targeting TGFβ signaling has been hindered by dose-limiting cardiotoxicities, possibly due to nonselective inhibition of multiple TGFβ isoforms.

View Article and Find Full Text PDF