Publications by authors named "G Illiano"

Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation.

View Article and Find Full Text PDF

Osteosarcoma is the most common malignant primary bone tumor in children and adolescents and is characterized by a high metastatic potential. Its clinical outcome remains discouraging despite aggressive treatments. Thus, novel therapeutic approaches are needed.

View Article and Find Full Text PDF

Previously, we have shown that leptin potentiates the antiproliferative action of cAMP elevating agents in breast cancer cells and that the protein kinase A (PKA) inhibitor KT-5720 prevented the antiproliferative effects induced by the leptin plus cAMP elevation. The present experiments were designed to gain a better understanding about the PKA role in the antitumor interaction between leptin and cAMP elevating agents and on the underlying signaling pathways. Here we show that exposure of MDA-MB-231 breast cancer cells to leptin resulted in a strong phosphorylation of both ERK1/2 and STAT3.

View Article and Find Full Text PDF

Elevation of cAMP inhibits the proliferation and expression of transformed phenotype in several cell types, including breast cancer cells. Leptin has been shown to act as a mitogen/survival factor in many types of cancer cells. In the present work, we have studied the impact of cAMP elevation on leptin-induced proliferation of breast cancer cells.

View Article and Find Full Text PDF

Background: cAMP is a second messenger that plays a role in intracellular signal transduction of various stimuli. a major function of cAMP in eukaryotes is activation of cAMP-dependent protein kinase (PKA). PKA is the best understood member of the serine-threonine protein kinase superfamily, and is involved in the control of a variety of cellular processes.

View Article and Find Full Text PDF