Publications by authors named "G I Tennekoon"

Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder arising from biallelic non-functional survival motor neuron 1 (SMN1) genes with variable copies of partially functional SMN2 gene. Intrathecal onasemnogene abeparvovec administration, at fixed, low doses, may enable treatment of heavier patients ineligible for weight-based intravenous dosing.

Objective: STRONG (NCT03381729) assessed the safety/tolerability and efficacy of intrathecal onasemnogene abeparvovec for sitting, nonambulatory SMA patients.

View Article and Find Full Text PDF

Background: Muscles of boys with Duchenne muscular dystrophy (DMD) are progressively replaced by fatty fibrous tissues, and weakness leads to loss of ambulation (LoA). Step activity (SA) monitoring is a quantitative measure of real-world ambulatory function. The relationship between quality of muscle health and SA is unknown in DMD.

View Article and Find Full Text PDF

Background: Joint contractures are common in boys and men with Duchenne muscular dystrophy (DMD), and management of contractures is an important part of care. The optimal methods to prevent and treat contractures are controversial, and the natural history of contracture development is understudied in glucocorticoid treated individuals at joints beyond the ankle.

Objective: To describe the development of contractures over time in a large cohort of individuals with DMD in relation to ambulatory ability, functional performance, and muscle quality measured using magnetic resonance imaging (MRI) and spectroscopy (MRS).

View Article and Find Full Text PDF

Striated muscle needs to maintain cellular homeostasis in adaptation to increases in physiological and metabolic demands. Failure to do so can result in rhabdomyolysis. The identification of novel genetic conditions associated with rhabdomyolysis helps to shed light on hitherto unrecognized homeostatic mechanisms.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to examine the psychometric properties of the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT) in children and youth with Spinal Muscular Atrophy (SMA).

Methods: In this prospective cross-sectional study, caregivers of children and youth with SMA completed the PEDI-CAT Daily Activities and Mobility domains. A subset of caregivers completed a questionnaire about the measure.

View Article and Find Full Text PDF