Publications by authors named "G I Raĭdaru"

The acknowledged potential of small-molecule therapeutics targeting disease-related protein-protein interactions (PPIs) has promoted active research in this field. The strategy of using small molecule inhibitors (SMIs) to fight strong (tight-binding) PPIs tends to fall short due to the flat and wide interfaces of PPIs. Here we propose a biligand approach for disruption of strong PPIs.

View Article and Find Full Text PDF

CK2 is a ubiquitous serine/threonine protein kinase, which has the potential to catalyze the generation of a large proportion of the human phosphoproteome. Due to its role in numerous cellular functions and general anti-apoptotic activity, CK2 is an important target of research with therapeutic potential. This emphasizes the need for cell-permeable highly potent and selective inhibitors and photoluminescence probes of CK2 for investigating the protein phosphorylation networks in living cells.

View Article and Find Full Text PDF

We combined the advantages of the selective inhibitor VX689, the bisubstrate-analogue conjugate approach, and photoreactive amino acids to develop 8 photoaffinity probes for Aurora A. The most efficient compounds possessed one-digit nanomolar KD values in the equilibrium binding assay, inhibited Aurora A at elevated concentrations of ATP in the phosphorylation assay in the presence of TPX2, and formed covalent complexes with the recombinant kinase or Aurora A in HeLa cells upon UV-irradiation. The recognition of the correct target by the probes during formation of the covalent complex in the biochemical assay and in situ was demonstrated by competition experiments using the non-labelled inhibitors VX689 and MLN8237.

View Article and Find Full Text PDF

During the past decade, the basophilic atypical kinase Haspin has emerged as a key player in mitosis responsible for phosphorylation of Thr3 residue of histone H3. Here, we report the construction of conjugates comprising an aromatic fragment targeted to the ATP-site of Haspin and a peptide mimicking the N-terminus of histone H3. The combination of effective solid phase synthesis procedures and a high throughput binding/displacement assay with fluorescence anisotropy readout afforded the development of inhibitors with remarkable subnanomolar affinity toward Haspin.

View Article and Find Full Text PDF

Potent and selective: The unique nature of the ATP binding pocket structure of Pim family protein kinases (PKs) was used for the development of bisubstrate inhibitors and a fluorescent probe with sub-nanomolar affinity. Conjugates of arginine-rich peptides with two ATP mimetic scaffolds were synthesized and tested as inhibitors of Pim-1. Against a panel of 124 protein kinases, a novel ARC-PIM conjugate selectively inhibited PKs of the Pim family.

View Article and Find Full Text PDF