Biosensing plays a pivotal role in various scientific domains, offering significant contributions to medical diagnostics, environmental monitoring, and biotechnology. Fluorescence biosensing relies on the fluorescence emission from labelled biomolecules to enable sensitive and selective identification and quantification of specific biological targets in various samples. Photonic crystal fibers (PCFs) have led to the development of optofluidic fibers enabling efficient light-liquid interaction within small liquid volume.
View Article and Find Full Text PDFSolid core photonic crystal fibers (SC-PCFs) have garnered attention as probes for surface-enhanced Raman spectroscopy (SERS) due to their potential as optofluidic devices, offering heightened sensitivity and reliability compared to traditional planar/colloidal nanoparticle-based SERS platforms. A smaller core allows for more light interaction but might compromise sensitivity and reliability due to reduced surface area for interaction. Here, we introduce an innovative SC-PCF design aimed at resolving the trade-off between increasing the evanescent field fraction and the core surface area.
View Article and Find Full Text PDFSurface enhanced Raman spectroscopy (SERS) is one of the most sensitive biosensing techniques that offers label free detection for a variety of applications. Generally, SERS spectroscopy is performed on nano-functionalized planar substrates with plasmonic structures or colloidal nanoparticles. Recently, photonic crystal fibers (PCFs) have gained great interest for SERS based bio sensing applications due to the immense advantages such as improved sensitivity, flexibility and remote sensing capability that it offers compared to the planar substrates.
View Article and Find Full Text PDFWe report continuous measurements of the transmission spectrum of a fiber loop mirror interferometer composed of a Panda-type polarization-maintaining (PM) optical fiber during the diffusion of dihydrogen (H) gas into the fiber. Birefringence variation is measured through the wavelength shift of the interferometer spectrum when the PM fiber is inserted into a gas chamber with H concentration from 1.5 to 3.
View Article and Find Full Text PDFEarly diagnosis of oral cancer is critical to improve the survival rate of patients. Raman spectroscopy, a non-invasive spectroscopic technique, has shown potential in identifying early-stage oral cancer biomarkers in the oral cavity environment. However, inherently weak signals necessitate highly sensitive detectors, which restricts widespread usage due to high setup costs.
View Article and Find Full Text PDF