Publications by authors named "G Holstein"

The vestibular hair cell receptors of anamniotes, designated Type II, are presynaptic to bouton endings of vestibular nerve distal neurites. An additional flask-shaped hair cell receptor, Type I, is present in amniotes, and communicates with a chalice-shaped afferent neuritic ending that surrounds the entire hair cell except its apical neck. Since the full repertoire of afferent fiber dynamics and sensitivities observed throughout the vertebrate phyla can be accomplished through Type II hair cell-bouton synapses, the functional contribution(s) of Type I hair cells and their calyces to vestibular performance remains a topic of great interest.

View Article and Find Full Text PDF

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive.

View Article and Find Full Text PDF

In the vestibular periphery, transmission conventional synaptic boutons is supplemented by post-synaptic calyceal endings surrounding Type I hair cells. This review focusses on the multiple modes of communication between these receptors and their enveloping calyces as revealed by simultaneous dual-electrode recordings. Classic orthodromic transmission is accompanied by two forms of bidirectional communication enabled by the extensive cleft between the Type I hair cell and its calyx.

View Article and Find Full Text PDF

A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR.

View Article and Find Full Text PDF

Balance impairment and falls are among the most prevalent and morbid conditions affecting older adults. A critical contributor to balance and gait function is the vestibular system; however, there remain substantial knowledge gaps regarding age-related vestibular loss and its contribution to balance impairment and falls in older adults. Given these knowledge gaps, the National Institute on Aging and the National Institute on Deafness and Other Communication Disorders convened a multidisciplinary workshop in April 2019 that brought together experts from a wide array of disciplines, such as vestibular physiology, neuroscience, movement science, rehabilitation, and geriatrics.

View Article and Find Full Text PDF