Proc Natl Acad Sci U S A
September 2024
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through the characterization of hyperactive alleles in , we discovered that the Inversin complex is activated by dimerization.
View Article and Find Full Text PDFGenetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through characterization of hyperactive alleles in , we discovered that the Inversin complex is activated by dimerization.
View Article and Find Full Text PDFComplex carbohydrates called glycans play crucial roles in the regulation of cell and tissue physiology, but how glycans map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type -glycans throughout the entirety of the model organism. We construct a library of multifunctional linkers to probe and anchor metabolically labelled glycans in expansion microscopy (ExM), an imaging modality that overcomes the diffraction limit of conventional optical microscopes through the physical expansion of samples embedded in a polyelectrolyte gel matrix.
View Article and Find Full Text PDFHow serine/threonine phosphatases are spatially and temporally tuned by regulatory subunits is a fundamental question in cell biology. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins are protein phosphatase 1 catalytic subunit binding partners associated with cardiocutaneous diseases. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize protein phosphatase 1 catalytic subunit to cell-cell junctions, but how ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize and whether they regulate protein phosphatase 1 catalytic subunit activity in vivo is unclear.
View Article and Find Full Text PDF