Publications by authors named "G Hoever"

A new disease, the severe acute respiratory distress syndrome (SARS), caused by the SARS coronavirus (SARS-CoV), emerged at the beginning of 2003 and rapidly spread throughout the world. Although the disease had disappeared in June 2003 its re-emergence cannot be excluded. The development of vaccines against SARS-CoV may take years.

View Article and Find Full Text PDF

Glycyrrhizin (GL) was shown to inhibit SARS-coronavirus (SARS-CoV) replication in vitro. Here the anti-SARS-CoV activity of 15 GL derivatives was tested. The introduction of 2-acetamido-beta-d-glucopyranosylamine into the glycoside chain of GL resulted in 10-fold increased anti-SARS-CoV activity compared to GL.

View Article and Find Full Text PDF

In a model of human neuroblastoma (NB) cell lines persistently infected with human cytomegalovirus (HCMV) we previously showed that persistent HCMV infection is associated with an increased malignant phenotype, enhanced drug resistance, and invasive properties. To gain insights into the mechanisms of increased malignancy we analyzed the global changes in cellular gene expression induced by persistent HCMV infection of human neuroblastoma cells by use of high-density oligonucleotide microarrays (HG-U133A, Affymetrix) and RT-PCR. Comparing the gene expression of different NB cell lines with persistently infected cell sub-lines revealed 11 host cell genes regulated in a similar manner throughout all infected samples.

View Article and Find Full Text PDF

To identify a model for the study of intestinal pathogenesis of severe acute respiratory syndrome (SARS) we tested the sensitivity of six human intestinal epithelial cell lines to infection with SARS coronavirus (SARS-CoV). In permissive cell lines, effects of SARS-CoV on cellular gene expression were analysed using high-density oligonucleotide arrays. Caco-2 and CL-14 cell lines were found to be highly permissive to SARS-CoV, due to the presence of angiotensin-converting enzyme 2 as a functional receptor.

View Article and Find Full Text PDF

The human T-lymphoid cell line H9 resistant to 3'-azido-2',3'-dideoxythymidine (AZT) has a very low level of thymidine kinase (TK) expression which accounts for the failure of AZT to inhibit HIV-1 replication. In the present study DNA methylation and histone deacetylation as possible mechanisms of decreased TK gene expression in the resistant cells were investigated. The resistant cells expressed high levels of DNA methyltransferases (DNMTs) 3a and 3b.

View Article and Find Full Text PDF