A lag in the increase in oxygen consumption (MO ) occurs at the start of sustainable exercise in trout. Waterborne dichloroacetate (0.58 and 3.
View Article and Find Full Text PDFOmega-3 polyunsaturated fatty acids (PUFAs) have unique properties purported to influence several aspects of metabolism, including energy expenditure and protein function. Supplementing with n-3 PUFAs may increase whole-body resting metabolic rate (RMR), by enhancing Na /K ATPase (NKA) activity and reducing the efficiency of sarcoplasmic reticulum (SR) Ca ATPase (SERCA) activity by inducing a Ca leak-pump cycle. The purpose of this study was to examine the effects of fish oil (FO) on RMR, substrate oxidation, and skeletal muscle SERCA and NKA pump function in healthy older individuals.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2020
The application of blood flow restriction (BFR) during resistance exercise is increasingly recognized for its ability to improve rehabilitation and for its effectiveness in increasing muscle hypertrophy and strength among healthy populations. However, direct comparison of the skeletal muscle adaptations to low-load resistance exercise (LL-RE) and low-load BFR resistance exercise (LL-BFR) performed to task failure is lacking. Using a within-subject design, we examined whole muscle group and skeletal muscle adaptations to 6 wk of LL-RE and LL-BFR training to repetition failure.
View Article and Find Full Text PDFIntroduction: In skeletal muscle, the Na/K ATPase (NKA) plays essential roles in processes linked to muscle contraction, fatigue, and energy metabolism; however, very little information exists regarding the regulation of NKA activity. The scarcity of information regarding NKA function in skeletal muscle likely stems from methodological constraints, as NKA contributes minimally to total cellular ATP utilization, and therefore contamination from other ATPases prevents the assessment of NKA activity in muscle homogenates. Here we introduce a method that improves accuracy and feasibility for the determination of NKA activity in small rodent muscle samples (5-10 mg) and in human skeletal muscle.
View Article and Find Full Text PDFFish oil (FO) supplementation in humans results in the incorporation of omega-3 fatty acids (FAs) eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic acid (DHA; C20:6) into skeletal muscle membranes. However, despite the importance of membrane composition in structure-function relationships, a paucity of information exists regarding how different muscle membranes/organelles respond to FO supplementation. Therefore, the purpose of the present study was to determine the effects 12 weeks of FO supplementation (3g EPA/2g DHA daily) on the phospholipid composition of sarcolemmal and mitochondrial fractions, as well as whole muscle responses, in healthy young males.
View Article and Find Full Text PDF