Publications by authors named "G Hegerl"

With climate extremes hitting nations across the globe, disproportionately burdening vulnerable developing countries, the prompt operation of the Loss and Damage fund is of paramount importance. As decisions on resource disbursement at the international level, and investment strategies at the national level, loom, the climate science community's role in providing fair and effective evidence is crucial. Attribution science can provide useful information for decision makers, but both ethical implications and deep uncertainty cannot be ignored.

View Article and Find Full Text PDF

Heatwaves are becoming more frequent under climate change and can lead to thousands of excess deaths. Adaptation to extreme weather events often occurs in response to an event, with communities learning fast following unexpectedly impactful events. Using extreme value statistics, here we show where regional temperature records are statistically likely to be exceeded, and therefore communities might be more at-risk.

View Article and Find Full Text PDF

In June 2021, western North America experienced a record-breaking heat wave outside the distribution of previously observed temperatures. While it is clear that the event was extreme, it is not obvious whether other areas in the world have also experienced events so far outside their natural variability. Using a novel assessment of heat extremes, we investigate how extreme this event was in the global context.

View Article and Find Full Text PDF

Global warming is expected to not only impact mean temperatures but also temperature variability, substantially altering climate extremes. Here we show that human-caused changes in internal year-to-year temperature variability are expected to emerge from the unforced range by the end of the 21 century across climate model initial-condition large ensembles forced with a strong global warming scenario. Different simulated changes in globally averaged regional temperature variability between models can be explained by a trade-off between strong increases in variability on tropical land and substantial decreases in high latitudes, both shown by most models.

View Article and Find Full Text PDF