Background: The protective/inhibitory B subunits of coagulation factor XIII (FXIII-B) is a ~80 kDa glycoprotein containing two N-glycosylation sites. Neither the structure nor the functional role of the glycans on FXIII-B has been explored.
Objective: To reveal the glycan structures linked to FXIII-B, to design a method for deglycosylating the native protein, to find out if deglycosylation influences the dimeric structure of FXIII-B and its clearance from the circulation.
Background: Aspirin resistance established by different laboratory methods is still a debated problem. Using COX1 specific methods no aspirin resistance was detected among healthy volunteers. Here we tested the effect of chronic aspirin treatment on platelets from patients with stable coronary artery disease.
View Article and Find Full Text PDFIntroduction: Protein C (PC) is a major anticoagulant and numerous distinct mutations in its coding gene result in quantitative or qualitative PC deficiency with high thrombosis risk. Homozygous or compound heterozygous PC deficiency usually leads to life-threatening thrombosis in neonates.
Patients And Methods: The molecular consequences of 3 different missense mutations of two patients have been investigated.
Introduction: It has been shown that thrombomodulin (TM) considerably delays factor XIII (FXIII) activation and this effect is abrogated by Factor V Leiden (FV(Leiden)) mutation. The aim of the study was to explore the effect of TM on the cross-linking of α(2)-plasmin inhibitor (α(2)-PI) to fibrin in plasma samples of different FV genotypes and how this effect is related to the impaired fibrinolysis of FV(Leiden) carriers.
Methods: In the plasma samples of fifteen individuals with different FV genotypes and in FV deficient plasma supplemented with wild type FV or FV(Leiden) coagulation was initiated by recombinant human tissue factor and phospholipids with or without recombinant human TM (rhTM).
Introduction: Factor V Leiden mutation (FV(Leiden)) is associated with impaired down-regulation of activated FV procoagulant activity and loss of FV anticoagulant function that result in an increased risk of venous thromboembolism. As the downstream effects of FV(Leiden) on clot formation and fibrinolyis have only partially been revealed, we investigated its effect on the activation of factor XIII (FXIII) and the cross-linking of fibrin.
Methods: In the plasma samples of fifteen healthy individuals with known FV genotypes coagulation was initiated by recombinant human tissue factor and phospholipids with or without recombinant human thrombomodulin (rhTM).