Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors.
View Article and Find Full Text PDFThe phosphatase and tensin homolog deleted on chromosome 10 () is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. , the processed pseudogene of , is an important transcriptional and post-transcriptional regulator of expression produces sense and antisense transcripts modulating expression, in conjunction with miRNAs.
View Article and Find Full Text PDFRAB28 is a farnesylated, ciliary G-protein. Patient variants in RAB28 are causative of autosomal recessive cone-rod dystrophy (CRD), an inherited human blindness. In rodent and zebrafish models, the absence of Rab28 results in diminished dawn, photoreceptor, outer segment phagocytosis (OSP).
View Article and Find Full Text PDFPTENP1 is a processed pseudogene of the tumour suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). It functions posttranscriptionally to regulate PTEN by acting as a sponge for microRNAs that target PTEN. PTENP1 therefore functions as a competitive endogenous RNA (ceRNA), competing with PTEN for binding of microRNAs (miRNA) and thereby modulating PTEN cellular abundance.
View Article and Find Full Text PDFRod photoreceptors can be saturated by exposure to bright background light, so that no flash superimposed on the background can elicit a detectable response. This phenomenon, called increment saturation, was first demonstrated psychophysically by Aguilar and Stiles and has since been shown in many studies to occur in single rods. Recent experiments indicate, however, that rods may be able to avoid saturation under some conditions of illumination.
View Article and Find Full Text PDF