EEG monitoring during anesthesia or for diagnosing sleep disorders is a common standard. Different approaches for measuring the important information of this biosignal are used. The most often and efficient one for entropic parameters is permutation entropy as it can distinguish the vigilance states in the different settings.
View Article and Find Full Text PDFBackground: Cortical high-frequency activation immediately before death has been reported, raising questions about an enhanced conscious state at this critical time. Here, we analyzed an electroencephalogram (EEG) from a comatose patient during the dying process with a standard bedside monitor and spectral parameterization techniques.
Methods: We report neurophysiologic features of a dying patient without major cortical injury.
Interpretability and reliability of deep learning models are important for computer-based drug discovery. Aiming to understand feature perception by such a model, we investigate a graph neural network for affinity prediction of protein-ligand complexes. We assess a latent representation of ligand binding sites and investigate underlying geometric structure in this latent space and its relation to protein function.
View Article and Find Full Text PDFIn patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo.
View Article and Find Full Text PDFSubthalamic (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) patients not only improves kinematic parameters of movement but also modulates cognitive control in the motor and non-motor domain, especially in situations of high conflict. The objective of this study was to investigate the relationship between DBS-induced changes in functional connectivity at rest and modulation of response- and movement inhibition by STN-DBS in a visuomotor task involving high conflict. During DBS ON and OFF conditions, we conducted a visuomotor task in 14 PD patients who previously underwent resting-state functional MRI (rs-fMRI) acquisitions DBS ON and OFF as part of a different study.
View Article and Find Full Text PDF