Publications by authors named "G H Kelsall"

Increasing densities of reaction sites for gaseous reactants in solid oxide electrochemical reactors (SOERs), is a key strategy for achieving enhanced performance in either fuel cell or electrolysis modes. Fabrication of 3D structured components in SOERs can enhance those densities of reaction sites, which is achieved by 3D inkjet printing with high reproducibility, having developed inks with appropriate properties. First, the effects of pillar geometries on SOER performances are predicted through numerical simulations, enabling subsequent 3D printing to focus on the more effective geometries.

View Article and Find Full Text PDF

Sludge produced from wastewater treatment has little to no value and is typically treated through volume reduction techniques, such as dewatering, thickening, or digestion. However, these methods inherently increase heavy metal concentrations, which makes the sludge unsuitable for land spreading and difficult to dispose of, owing to strict legal requirements/regulations concerning these metals. We addressed this problem, for the first time, by using recyclable low-cost protic ionic liquids to complex these toxic metals through a chemical fractionation process.

View Article and Find Full Text PDF

Ceramic fuel cells offer a clean and efficient means of producing electricity through a variety of fuels. However, miniaturization of cell dimensions for portable device application remains a challenge, as volumetric power densities generated by readily-available planar/tubular ceramic cells are limited. Here, we demonstrate a concept of 'micro-monolithic' ceramic cell design.

View Article and Find Full Text PDF

The electrochemical cathodic reduction of cyclic imides (maleimides) to succinimides can be achieved chemoselectively in the presence of alkene, alkyne, and benzyl groups. The efficiency of the system was demonstrated by using a 3D electrode in a continuous flow reactor. The reduction of 3,4-dimethylmaleimides to the corresponding succinimides proceeds with a 3:2 diastereomeric ratio, which is independent of the nitrogen substituent and electrode surface area.

View Article and Find Full Text PDF

We revisit the fundamental constraints that apply to flat band potential values at semiconductor photo-electrodes. On the physical scale, the Fermi level energy of a non-degenerate semiconductor at the flat band condition, EF(FB), is constrained to a position between the conduction band, EC, and the valence band, EV,: |EC| < |EF(FB)| < |EV| throughout the depth of the semiconductor. The same constraint applies on the electrode potential scale, where the values are referenced against a common reference electrode: UC(FB) < UF(FB) < UV(FB).

View Article and Find Full Text PDF