Publications by authors named "G H Genzel"

Clostridium species cause several local and systemic diseases. Conventional identification of these microorganisms is in part laborious, not always reliable, time consuming or does not always distinguish different species, i.e.

View Article and Find Full Text PDF

Fast turnaround times are of utmost importance for biomedical reconnaissance, particularly regarding dangerous pathogens. Recent advances in sequencing technology and its devices allow sequencing within a short time frame outside stationary laboratories close to the epicenter of the outbreak. In our study, we evaluated the portable sequencing device MinION as part of a rapidly deployable laboratory specialized in identification of highly pathogenic agents.

View Article and Find Full Text PDF

We established a modular, rapidly deployable laboratory system that provides diagnostic support in resource-limited, remote areas. Developed as a quick response asset to unusual outbreaks of infectious diseases worldwide, several of these laboratories have been used as part of the World Health Organization response to the Ebola virus outbreaks by teams of the 'European Mobile Lab' project in West Africa since March 2014. Within three days from deployment, the first European mobile laboratory became operational at the Ebola Treatment Unit (ETU) in Guéckédou, southern Guinea.

View Article and Find Full Text PDF

The activity of finafloxacin against 73 strains of the Bacteroides fragilis group, 10 other Gram-negative anaerobic rods and 31 Clostridium difficile strains was determined by the broth microdilution technique. The activity was compared with that of moxifloxacin, levofloxacin, ciprofloxacin, clindamycin, imipenem, piperacillin/tazobactam and metronidazole. MIC(50/90) values (minimum inhibitory concentration, in μg/mL, at which 50% and 90% of the isolates tested are inhibited, respectively) for finafloxacin for the different species were determined: B.

View Article and Find Full Text PDF