Publications by authors named "G H Franchini"

Systemic vaccination of macaques with V1-deleted (ΔV1) envelope immunogens reduce the risk of SIV acquisition by approximately 60%, with protective roles played by V2-specific ADCC and envelope-specific mucosal IL-17NKp44 innate lymphoid cells (ILCs). We investigated whether increased mucosal responses to V2 benefit vaccine efficacy by delivering oral nanoparticles (NPs) that release V2-scaffolded on Typhoid Toxin B (TTB) to the large intestine. Strikingly, mucosal immunization of male macaques abrogated vaccine efficacy with control TTB or empty NPs, but vaccine efficacy of up to 47.

View Article and Find Full Text PDF

SIV and HIV-based envelope V1-deleted (ΔV1) vaccines, delivered systemically by the DNA/ALVAC/gp120 platform, decrease the risk of mucosal SIV or SHIV acquisition more effectively than V1-replete vaccines. Here we investigated the induction of mucosal and systemic memory-like NK cells as well as antigen-reactive ILC response by DNA/ALVAC/gp120-based vaccination and their role against SIV/SHIV infection. ΔV1 HIV vaccination elicited a higher level of mucosal TNF-α and CD107 memory-like NK cells than V1-replete vaccination, suggesting immunogen dependence.

View Article and Find Full Text PDF

Background: Human T cell lymphotropic virus type 1 (HTLV-1) infection remains a largely neglected public health problem, particularly in resource-poor areas with high burden of communicable and non-communicable diseases, such as some remote populations in Central Australia where an estimated 37% of adults are infected with HTLV-1. Most of our understanding of HTLV-1 infection comes from studies of the globally spread subtype-A (HTLV-1a), with few molecular studies reported with the Austral-Melanesian subtype-C (HTLV-1c) predominant in the Indo-Pacific and Oceania regions.

Results: Using a primer walking strategy and direct sequencing, we constructed HTLV-1c genomic consensus sequences from 22 First Nations participants living with HTLV-1c in Central Australia.

View Article and Find Full Text PDF

The transient depletion of monocytes alone prior to exposure of macaques to HTLV-1 enhances both HTLV-1 (wild type) and HTLV-1 (Orf-1 knockout) infectivity, but seroconversion to either virus is not sustained over time, suggesting a progressive decrease in virus expression. These results raise the hypotheses that either HTLV-1 persistence depends on a monocyte reservoir or monocyte depletion provides a transient immune evasion benefit. To test these hypotheses, we simultaneously depleted NK cells, CD8 T cells, and monocytes (triple depletion) prior to exposure to HTLV-1 or HTLV-1.

View Article and Find Full Text PDF