Publications by authors named "G Guinot"

Estimating how traits evolved and impacted diversification across the tree of life represents a critical topic in ecology and evolution. Although there has been considerable research in comparative biology, large parts of the tree of life remain underexplored. Sharks are an iconic clade of marine vertebrates, and key components of marine ecosystems since the early Mesozoic.

View Article and Find Full Text PDF

Simultaneously investigating the effects of abiotic and biotic factors on diversity dynamics is essential to understand the evolutionary history of clades. The Grande Coupure corresponds to a major faunal turnover at the Eocene-Oligocene transition (EOT) (~34.1 to 33.

View Article and Find Full Text PDF

The Cretaceous-Paleogene event was the last mass extinction event, yet its impact and long-term effects on species-level marine vertebrate diversity remain largely uncharacterized. We quantified elasmobranch (sharks, skates, and rays) speciation, extinction, and ecological change resulting from the end-Cretaceous event using >3200 fossil occurrences and 675 species spanning the Late Cretaceous-Paleocene interval at global scale. Elasmobranchs declined by >62% at the Cretaceous-Paleogene boundary and did not fully recover in the Paleocene.

View Article and Find Full Text PDF

Estimating deep-time species-level diversification processes remains challenging. Both the fossil record and molecular phylogenies allow the estimation of speciation and extinction rates, but each type of data may still provide an incomplete picture of diversification dynamics. Here, we combine species-level palaeontological (fossil occurrences) and neontological (molecular phylogenies) data to estimate deep-time diversity dynamics through process-based birth-death models for Carcharhiniformes, the most speciose shark order today.

View Article and Find Full Text PDF

Sibert and Rubin (Reports, 4 June 2021, p. 1105) claim to have identified a previously unidentified, major extinction event of open-ocean sharks in the early Miocene. We argue that their interpretations are based on an experimental design that does not account for a considerable rise in the sedimentation rate coinciding with the proposed event, nor for intraspecific variation in denticle morphology.

View Article and Find Full Text PDF