Publications by authors named "G Guillonneau"

A novel extrinsic method for the measurement of particle surface distribution in a carbon black-filled elastomer via nanoindentation is developed. This method is based on the measurement of the contact stiffness obtained from the continuous stiffness measurement mode. The proposed tip-particle model is held by two main hypotheses: the particles do not deform significantly during indentation so that only the elastomer matrix elastically deforms; particles are physically bounded with the surrounding matrix.

View Article and Find Full Text PDF

By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings.

View Article and Find Full Text PDF

The mechanical properties of electrodeposited copper with highly-oriented nanoscale twins were investigated by micropillar compression. Uniform nanotwinned copper films with preferred twin orientations, either vertical or horizontal, were obtained by controlling the plating conditions. In addition, an ultrafine grained copper film was synthesized to be used as a reference sample.

View Article and Find Full Text PDF

The FeCrNi alloy, whose composition is close to that of stainless steel 304, was prepared by electrodeposition and characterized. Nanocrystalline FeCrNi (nc-FeCrNi) was obtained by employing a double-compartment cell where the anode is separated from the cathode compartment, while amorphous FeCrNi (a-FeCrNi) was deposited in a conventional single electrochemical cell. The carbon content of nc-FeCrNi was found to be significantly lower than that of a-FeCrNi, suggesting that carbon inclusion is responsible for the change in the microstructure.

View Article and Find Full Text PDF