Publications by authors named "G Guena"

Plants constantly undergo external mechanical loads such as wind or touch and respond to these stimuli by acclimating their growth processes. A fascinating feature of this mechanical-induced growth response is that it can occur rapidly and at long distance from the initial site of stimulation, suggesting the existence of a fast signal that propagates across the whole plant. The nature and origin of the signal is still not understood, but it has been recently suggested that it could be purely mechanical and originate from the coupling between the local deformation of the tissues (bending) and the water pressure in the plant vascular system.

View Article and Find Full Text PDF

We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids.

View Article and Find Full Text PDF

The present work deals with emulsions of volatile alkanes in an aqueous clay suspension, Laponite, which forms a yield stress fluid. For a large enough yield stress (i.e.

View Article and Find Full Text PDF

The spontaneous spreading of the 5CB nematic liquid crystal on solid substrates has been extensively studied in the last years both at the microscopic(1-4) and macroscopic(5-6) scales. The remarkable feature at the microscopic scale is the presence of a discontinuity in the thickness profile of the films. On the other hand, the spreading dynamics of macroscopic drops is quite specific.

View Article and Find Full Text PDF

New experiments on drops evaporating in normal atmosphere from smooth substrates in the situation of complete wetting are reported and compared with the available theoretical model. They are the continuation of previous work with alkane or water sessile drops, which is first briefly summarized. The model accounts very well for the dynamics of the drop radius, but the predictions are only qualitative for the contact angle, especially for small angles.

View Article and Find Full Text PDF