Publications by authors named "G Gruden"

Mitochondrial dysfunction plays an important role in the development of podocyte injury in diabetic nephropathy (DN). Tunnelling nanotubes (TNTs) are long channels that connect cells and allow organelle exchange. Mesenchymal stromal cells (MSCs) can transfer mitochondria to other cells through the M-Sec-TNTs system.

View Article and Find Full Text PDF

Context: MicroRNA-191-5p regulates key cellular processes involved in the pathogenesis of diabetic complications such as angiogenesis, extracellular matrix deposition, and inflammation. However, no data on circulating microRNA-191-5p in the chronic complications of diabetes are available.

Objective: To assess whether serum levels of microRNA-191-5p were associated with micro- and macrovascular disease in a large cohort of subjects with type 1 diabetes mellitus (DM1) from the EURODIAB Prospective Complication Study.

View Article and Find Full Text PDF

Aims: To investigate whether serum miR-145-5p levels were associated with micro-macrovascular chronic complications in patients with type 1 diabetes (DM1).

Methods: A nested case-control study from the EURODIAB Prospective Complications Study was performed. Cases (n = 289) had one or more complications of diabetes, whereas controls (n = 153) did not have any complication.

View Article and Find Full Text PDF

Podocyte injury leading to albuminuria is a characteristic feature of diabetic nephropathy (DN). Hyperglycemia and advanced glycation end products (AGEs) are major determinants of DN. However, the underlying mechanisms of podocyte injury remain poorly understood.

View Article and Find Full Text PDF

Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies.

View Article and Find Full Text PDF