Colloids (1-1,000 nm) are important phosphorus (P) carriers in agricultural soils. However, most studies are based on colloids from soil waters extracted in the laboratory, thus limiting the understanding of the natural transfer of colloidal P along the soil-to-stream continuum. Here, we conducted a field study on the colloidal P in both natural soil waters and their adjacent stream waters in an agricultural catchment (Kervidy-Naizin, western France).
View Article and Find Full Text PDFSci Total Environ
December 2020
The majority of freshwater ecosystems worldwide suffer from eutrophication, particularly because of agriculture-derived nutrient sources. In the European Union, a discrepancy exists between the scale of regulatory assessment and the size of research catchments. The Water Framework Directive sets water quality objectives at the mesoscale (50-500 km), a scale at which both hillslope and in-stream processes influence carbon (C), nitrogen (N) and phosphorus (P) dynamics.
View Article and Find Full Text PDFUnderstanding how water and solutes enter and propagate through freshwater landscapes in the Anthropocene is critical to protecting and restoring aquatic ecosystems and ensuring human water security. However, high hydrochemical variability in headwater streams, where most carbon and nutrients enter river networks, has hindered effective modelling and management. We developed an analytical framework informed by landscape ecology and catchment hydrology to quantify spatiotemporal variability across scales, which we tested in 56 headwater catchments, sampled periodically over 12 years in western France.
View Article and Find Full Text PDFIn agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations.
View Article and Find Full Text PDFAn essential aspect of eutrophication studies is to trace the ultimate origin of phosphate ions (P-PO) associated with the solid phase of river sediments, as certain processes can make these ions available for algae. However, this is not a straightforward task because of the diversity of allochthonous and autochthonous sources that can supply P-PO to river sediments as well as the existence of in-stream processes that can change the speciation of these inputs and obscure the original sources. Here, we present the results of a study designed to explore the potentials, limitations and conditions for the use of the oxygen isotope composition of phosphate (δOp) extracted from river sediments for this type of tracing.
View Article and Find Full Text PDF