Precision deuteration has become part of the medicinal chemist's toolbox, but its usefulness can be undermined by unpredictable metabolic switch effects. Herein we report the deuteration of doxophylline, a drug used in the treatment of asthma and COPD that undergoes extensive oxidative metabolism. Labeling of the main metabolic soft spots triggered an unexpected multidirectional metabolic switch that, while not improving the pharmacokinetic parameters, changed the metabolic scenario and, in turn, the pharmacodynamic features in two murine models of lung injury.
View Article and Find Full Text PDFBackground: In recent decades, hyaluronic acid (HA) has attracted great attention as a new treatment option for osteoarthritis. Classical therapies are not able to stop the cartilage degeneration process nor do they favor tissue repair. Nowadays, it is accepted that high molecular weight HA can reduce inflammation by promoting tissue regeneration; therefore, the aim of this study was to verify the efficacy of a new high molecular weight HA of plant origin (called GreenIuronic) in maintaining joint homeostasis and preventing the harmful processes of osteoarthritis.
View Article and Find Full Text PDFDespite the isolation of hundreds of bioactive isocyanides from terrestrial fungi and bacteria as well as marine organisms, the isocyanide functionality has so far received little attention from a medicinal chemistry standpoint. The widespread tenet that isocyanides are chemically and metabolically unstable has restricted bioactivity studies to their antifouling properties and technical applications. In order to confirm or refute this idea, the hepatic metabolism of six model isocyanides was investigated.
View Article and Find Full Text PDF