Publications by authors named "G Gronoff"

Long Island Sound (LIS) frequently experiences ozone (O) exceedance events that surpass national ambient air quality standards (NAAQS) due to complex driving factors. The underlying mechanisms governing summertime O pollution are investigated through collaborative observations from lidar remote sensing and ground samplers during the 2018 LIS Tropospheric O Study (LISTOS). Regional transport and local chemical reactions are identified as the two key driving factors behind the observed O episodes in LIS.

View Article and Find Full Text PDF

The Ozone Water-Land Environmental Transition Study, 2018 (OWLETS-2) measured total non-methane hydrocarbons (TNMHC) and EPA PAMS Volatile Organic Compounds (VOCs) on an island site in the northern Chesapeake Bay 2.1 and 3.4 times greater in concentration, respectively, than simultaneous measurements at a land site just 13 km away across the land-water interface.

View Article and Find Full Text PDF

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density.

View Article and Find Full Text PDF

Air pollution associated with wildfire smoke transport during the summer can significantly affect ozone (O) and particulate matter (PM) concentrations, even in heavily populated areas like New York City (NYC). Here, we use observations from aircraft, ground-based lidar, in-situ analyzers and satellite to study and assess wildfire smoke transport, vertical distribution, optical properties, and potential impact on air quality in the NYC urban and coastal areas during the summer 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). We investigate an episode of dense smoke transported and mixed into the planetary boundary layer (PBL) on August 15-17, 2018.

View Article and Find Full Text PDF

Recirculation of pollutants due to a bay breeze effect is a key meteorological mechanism impacting air quality near urban coastal areas, but regional and global chemical transport models have historically struggled to capture this phenomenon. We present a case study of a high ozone (O) episode observed over the Chesapeake Bay during the NASA Ozone Water-Land Environmental Transition Study (OWLETS) in summer 2017. OWLETS included a complementary suite of ground-based and airborne observations, with which we characterize the meteorological and chemical context of this event and develop a framework to evaluate model performance.

View Article and Find Full Text PDF