PLoS Comput Biol
January 2025
Single-cell transcriptomics experiments provide gene expression snapshots of heterogeneous cell populations across cell states. These snapshots have been used to infer trajectories and dynamic information even without intensive, time-series data by ordering cells according to gene expression similarity. However, while single-cell snapshots sometimes offer valuable insights into dynamic processes, current methods for ordering cells are limited by descriptive notions of "pseudotime" that lack intrinsic physical meaning.
View Article and Find Full Text PDFNat Comput Sci
September 2024
Multimodal, single-cell genomics technologies enable simultaneous measurement of multiple facets of DNA and RNA processing in the cell. This creates opportunities for transcriptome-wide, mechanistic studies of cellular processing in heterogeneous cell populations, such as regulation of cell fate by transcriptional stochasticity or tumor proliferation through aberrant splicing dynamics. However, current methods for determining cell types or 'clusters' in multimodal data often rely on ad hoc approaches to balance or integrate measurements, and assumptions ignoring inherent properties of the data.
View Article and Find Full Text PDFRecent advances in high-throughput, multi-condition experiments allow for genome-wide investigation of how perturbations affect transcription and translation in the cell across multiple biological entities or modalities, from chromatin and mRNA information to protein production and spatial morphology. This presents an unprecedented opportunity to unravel how the processes of DNA and RNA regulation direct cell fate determination and disease response. Most methods designed for analyzing large-scale perturbation data focus on the observational outcomes, e.
View Article and Find Full Text PDFThe advent of high-throughput transcriptomics provides an opportunity to advance mechanistic understanding of transcriptional processes and their connections to cellular function at an unprecedented, genome-wide scale. These transcriptional systems, which involve discrete stochastic events, are naturally modeled using chemical master equations (CMEs), which can be solved for probability distributions to fit biophysical rates that govern system dynamics. While CME models have been used as standards in fluorescence transcriptomics for decades to analyze single-species RNA distributions, there are often no closed-form solutions to CMEs that model multiple species, such as nascent and mature RNA transcript counts.
View Article and Find Full Text PDF