Proc Natl Acad Sci U S A
December 2024
Quasiparticles are low-energy excitations with important roles in condensed matter physics. An intriguing example is provided by Majorana quasiparticles, which are equivalent to their antiparticles. Despite being implicated in neutrino oscillations and topological superconductivity, their experimental realizations remain very rare.
View Article and Find Full Text PDFHere we present a computational and experimental fluid dynamics study for the characterization of the flow field within the gas chamber of a Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensor, at different flow rates at the inlet of the chamber. The transition from laminar to turbulent regime is ruled both by the inlet flow conditions and dimension of the gas chamber. The study shows how the distribution of the flow field in the chamber can influence the QEPAS sensor sensitivity, at different operating pressures.
View Article and Find Full Text PDFMolecular dynamics simulations were employed to investigate the phase separation process of a two-dimensional active Brownian dumbbell model. We evaluated the time dependence of the typical size of the dense component using the scaling properties of the structure factor, along with the averaged number of clusters and their radii of gyration. The growth observed is faster than in active disk models, and this effect is further enhanced under stronger activity.
View Article and Find Full Text PDFWe study a model chiral fluid in two dimensions composed of Brownian disks interacting via a Lennard-Jones potential and a nonconservative transverse force, mimicking colloids spinning at a given rate. The system exhibits a phase separation between a chiral liquid and a dilute gas phase that can be characterized using a thermodynamic framework. We compute the equations of state and show that the surface tension controls interface corrections to the coexisting pressure predicted from the equal-area construction.
View Article and Find Full Text PDFThe liquid-vapor phase separation is investigated via lattice Boltzmann simulations in three dimensions. After expressing length and time scales in reduced physical units, we combined data from several large simulations (on 512^{3} nodes) with different values of viscosity, surface tension, and temperature, to obtain a single curve of rescaled length l[over ̂] as a function of rescaled time t[over ̂]. We find evidence of the existence of kinetic and inertial regimes with growth exponents α_{d}=1/2 and α_{i}=2/3 over several time decades, with a crossover from α_{d} to α_{i} at t[over ̂]≃1.
View Article and Find Full Text PDF