Unlabelled: Diagnostic accuracy and therapeutic decision-making for IDH-mutant gliomas in tumor board reviews are based on MRI and multidisciplinary interactions.
Materials And Methods: This study explores the feasibility of deep learning-based reconstruction (DLR) in MRI for IDH-mutant gliomas. The research utilizes a multidisciplinary approach, engaging neuroradiologists, neurosurgeons, neuro-oncologists, and radiotherapists to evaluate qualitative aspects of DLR and conventional reconstructed (CR) sequences.
Rationale And Objectives: Traumatic neuroradiological emergencies necessitate rapid and accurate diagnosis, often relying on computed tomography (CT). However, the associated ionizing radiation poses long-term risks. Modern artificial intelligence reconstruction algorithms have shown promise in reducing radiation dose while maintaining image quality.
View Article and Find Full Text PDFThe aim was to explore the performance of dynamic contrast-enhanced (DCE) MRI and diffusion kurtosis imaging (DKI) in differentiating the molecular subtypes of adult-type gliomas. A multicenter MRI study with standardized imaging protocols, including DCE-MRI and DKI data of 81 patients with WHO grade 2-4 gliomas, was performed at six centers. The DCE-MRI and DKI parameter values were quantitatively evaluated in ROIs in tumor tissue and contralateral normal-appearing white matter.
View Article and Find Full Text PDF