The ultimate goal of Li ion battery design should consist of fully accessible metallic current collectors, possibly of nanoscale dimensions, intimately in contact with high capacity stable electrode materials. Here we engineer three-dimensional porous nickel based current collector coated conformally with layers of silicon, which typically suffers from poor cycle life, to form high-capacity electrodes. These binder/conductive additive free silicon electrodes show excellent electrode adhesion resulting in superior cyclic stability and rate capability.
View Article and Find Full Text PDFNon-aqueous Li-air or Li-O(2) cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden death arises from limited charge transport through the growing Li(2)O(2) film to the Li(2)O(2)-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li(2)O(2)-electrolyte interface.
View Article and Find Full Text PDFAmong the many important challenges facing the development of Li-air batteries, understanding the electrolyte's role in producing the appropriate reversible electrochemistry (i.e., 2Li(+) + O2 + 2e(-) ↔ Li2O2) is critical.
View Article and Find Full Text PDFA hybrid carbon fiber electrode (CFE) consisting of TiO2 semiconductor photocatalyst and Pt-Ru catalyst has been developed to boost the performance of direct methanol fuel cells (DMFC). These two catalyst nanoparticles are deposited on opposite sides of the carbon fiber paper such that methanol oxidation is carried out catalytically on Pt-Ru and photocatalytically on TiO2 under UV-light irradiation. Since both catalysts carry out methanol oxidation independently, we observe an additive effect in the current generation.
View Article and Find Full Text PDFSignificant enhancement in the electrocatalytic activity of Pt particles toward oxygen reduction reaction (ORR) has been achieved by depositing them on a single wall carbon nanotubes (SWCNT) support. Compared to a commercial Pt/carbon black catalyst, Pt/SWCNT films cast on a rotating disk electrode exhibit a lower onset potential and a higher electron-transfer rate constant for oxygen reduction. Improved stability of the SWCNT support is also confirmed from the minimal change in the oxygen reduction current during repeated cycling over a period of 36 h.
View Article and Find Full Text PDF