ACS Appl Mater Interfaces
December 2024
The use of synthetic hydrogels in wastewater treatment represents a promising and scalable approach to achieving clean water. By modulation of their chemical structure, hydrogels can effectively remove a wide range of toxic compounds, including emerging organic pollutants and heavy metals. For the latter, recovery is essential for both environmental protection and metal recycling.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) is increasing in significance as a bioanalytical tool. Novel nanostructured metal substrates are required to improve performances and versatility of SERS spectroscopy. In particular, as biological tissues are relatively transparent in the infrared wavelength range, SERS-active materials suitable for infrared laser excitation are needed.
View Article and Find Full Text PDFA new synthetic approach for the production of carbon nanomaterials (CNM) decorated with organophosphorus moieties is presented. Three different triphenylphosphine oxide (TPPO) derivatives were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs) and graphene platelets (GPs). The TPPOs chosen bear functional groups able to react with the CNMs by Tour reaction (an amino group), nitrene cycloaddition (an azido group) or CuAAC reaction (one terminal C-C triple bond).
View Article and Find Full Text PDFGraphene has recently emerged as a novel material in the biomedical field owing to its optical properties, biocompatibility, large specific surface area and low cost. In this paper, we provide the first demonstration of the possibility of using light to remotely trigger the release of drugs from graphene in a highly controlled manner. Different drugs including chemotherapeutics and proteins are firmly adsorbed onto reduced graphene oxide (rGO) nanosheets dispersed in a biopolymer film and then released by individual millisecond-long light pulses generated by a near infrared (NIR) laser.
View Article and Find Full Text PDFIn this work, we present the characterization of an enantiomeric pair of fluorescent dye organogelators and the properties of their stable gel at low concentration in organic solvents. The gels of both enantiomers and of their mixtures were analyzed by differential scanning calorimetry, circular dichroism (CD), atomic force microscopy, UV-vis absorption, and fluorescence. The acquired data were supported by molecular modeling of the helical assembly of the gelators and by the simulation of their CD spectra by means of DeVoe method, and suggested the occurrence of an enantiomeric discrimination process during the formation of the gels.
View Article and Find Full Text PDF