Publications by authors named "G Geyik"

Multifunctional nanoplatforms developed from natural polymers and graphene oxide (GO) with enhanced biological/physicochemical features have recently attracted attention in the biomedical field. Herein, a new multifunctional near-infrared (NIR) light-, pH- and magnetic field-sensitive hybrid nanoplatform (mGO@AL-g-PHPM@ICG/EP) is developed by combining iron oxide decorated graphene oxide nanosheets (mGO) and poly(2-hydroxypropylmethacrylamide) grafted alginate (AL-g-PHPM) copolymer loaded with indocyanine green (ICG) and etoposide (EP) for chemo/phototherapy. The functional groups, specific crystal structure, size, morphology, and thermal stability of the nanoplatform were fully characterized by XRD, UV, FTIR, AFM/TEM/FE-SEM, VSM, DSC/TG, and BET analyses.

View Article and Find Full Text PDF

Recently, pH-responsive nanogels are playing progressively important roles in cancer treatment. The present study focuses on designing and developing pH-responsive alginate-based nanogels to achieve a controlled release of etoposide (Et) while enhancing its hydrophilicity. Alginate (ALG) is grafted with 2-hydroxypropyl methacrylamide (HPMA) through a microwave-supported method, and the chemical structure of the graft copolymer (ALG-g-PHPMA) was verified by H/C NMR and FTIR techniques.

View Article and Find Full Text PDF

In the last decade, interest in the development of new graft copolymers based on natural polysaccharides has grown remarkably due to their potential applications in the wastewater treatment, biomedical, nanomedicine, and pharmaceutical fields. Herein, a novel graft copolymer of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) (κ-Crg-g-PHPMA) was synthesized using a 'microwave induced' technique. The synthesized novel graft copolymer has been well characterized in terms of FTIR, C NMR, molecular weight determination, TG, DSC, XRD, SEM, and elemental analyses, taking κ-carrageenan as a reference.

View Article and Find Full Text PDF

In the last two decades, the utilization of magnetic nanospheres in intelligent polymeric structures have received increased attention of researchers in numerous biomedical applications. Here, hybrid nanostructured triple-responsive magnetic nanospheres (κ-Car-g-P(AA/DMA)@FeO) containing inorganic iron oxide core (FeO) and organic graft copolymeric shell based on κ-carrageenan (κ-Car) and poly(acrylic acid/dimethylaminoethyl methacrylate) (P(AA/DMA)) were synthesized by microwave induced co-precipitation technique. The structure, size, surface morphology, magnetic property and stability of synthesized κ-Car-g-P(AA/DMA)@FeO magnetic nanospheres were characterized using FTIR, UV, XRD, TEM, Zeta-sizer, and VSM.

View Article and Find Full Text PDF

Purpose: Music therapy has been used for relaxation in traditional medicine. This study explored the effect of music therapy on the physical and mental parameters of cancer patients during hematopoietic stem cell transplantation (HSCT).

Design And Methods: Thirty patients who were hospitalized for bone marrow transplantation were included.

View Article and Find Full Text PDF