Multiple chemical sensitivity (MCS) is a chronic disorder characterized by a variety of symptoms associated with the exposure to chemicals at a concentration below the toxic level. Previous studies have demonstrated peculiar responses in brain activity in these patients with respect to sensory stimuli while the association between chemical sensitivity and other environmental intolerances such as noise sensitivity has been questioned by researchers. In this study, a cohort of 18 MCS patients underwent transient-evoked otoacoustic emission (TEOAE) testing with and without contralateral suppression to evaluate the functionality of the medial olivocochlear (MOC) reflex involved in speech-in-noise sensitivity.
View Article and Find Full Text PDFMultiple chemical sensitivity (MCS) patients usually react to odour compounds and the majority of neuroimaging studies assessed, especially at the cortical level, many olfactory-related correlates. The purpose of the present study was to depict sub-cortical metabolic changes during a neutral (NC) and pure (OC) olfactory stimulation by using a recently validated (18)F-2-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography/computer tomography procedure in 26 MCS and 11 healthy (HC) resting subjects undergoing a battery of clinical tests. Twelve subcortical volumes of interest were identified by the automated anatomical labeling library and normalized to thalamus FDG uptake.
View Article and Find Full Text PDFPurpose: To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals.
Methods: Two (18)F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.
Multiple chemical sensitivity (MCS) is a relatively common clinical diagnosis in western populations and its symptoms (i.e. dysosmia) are mainly triggered by chemical compounds, such as common odorants.
View Article and Find Full Text PDFObesity and metabolic comorbidities represent increasing health problems. Endocrine disrupting compounds (EDCs) are exogenous agents that change endocrine function and cause adverse health effects. Most EDCs are synthetic chemicals; some are natural food components as phytoestrogens.
View Article and Find Full Text PDF