Publications by authors named "G Garau"

The role of compost and biochar in the recovery of As and Sb-polluted soils is poorly investigated, as well as the influence of their application rates on soil health and quality. In this study, we therefore investigated the effectiveness over time (2, 4, and 6 months, M) of a municipal solid waste compost (MSWC) and a biochar (BC), applied at 10 and 30% rates, and of selected mixtures (MIX; applied at 10 and 30% total rates, 1:1 ratio of MSWC and BC), on labile As and Sb in a polluted soil from an abandoned Sb mine (Djebel Hamimat, Algeria). At the same timepoints, the amendment impact on soil chemistry was also monitored, while the activity and diversity of the resident microbial communities were investigated at 6 M.

View Article and Find Full Text PDF

Hemp ( L.) is known to tolerate high concentrations of soil contaminants which however can limit its biomass yield. On the other hand, organic-based amendments such as biochar can immobilize soil contaminants and assist hemp growth in soils contaminated by potentially toxic elements (PTEs), allowing for environmental recovery and income generation, e.

View Article and Find Full Text PDF

The combination of soil amendments with plants can be a viable option for restoring the functionality of PTEs-contaminated soils. Soil recovery could be further optimized through the mixed cropping of plant species (e.g.

View Article and Find Full Text PDF

Biochar and compost are able to influence the mobility of potentially toxic elements (PTEs) in soil. As such, they can be useful in restoring the functionality of contaminated soils, albeit their effectiveness can vary substantially depending on the chemical and/or the (micro)biological endpoint that is targeted. To better explore the potential of the two amendments in the restoration of PTE-contaminated soils, biochar, compost (separately added at 3% /), and their mixtures (1:1, 3:1, and 1:3 biochar-to-compost ratios) were added to contaminated soil (i.

View Article and Find Full Text PDF

Compost from municipal solid waste (MSWC) can represent a resource for the environmental management of soils contaminated with potentially toxic elements (PTEs), since it can reduce their mobility and improve soil fertility. However, the long-term impact of compost on soil recovery has been poorly investigated. To this end, the influence of a MSWC added at different rates (i.

View Article and Find Full Text PDF