The electron magnetic moment, -μ/μ_{B}=g/2=1.001 159 652 180 59 (13) [0.13 ppt], is determined 2.
View Article and Find Full Text PDFThe application of silicon photomultiplier (SiPM) technology for weak-light detection at a single photon level has expanded thanks to its better photon detection efficiency in comparison to a conventional photomultiplier tube (PMT). SiPMs with large detection area have recently become commercially available, enabling applications where the photon flux is low both temporarily and spatially. On the other hand, several drawbacks exist in the usage of SiPMs such as a higher dark count rate, many readout channels, slow response time, and optical crosstalk; therefore, users need to carefully consider the trade-offs.
View Article and Find Full Text PDFWe propose using trapped electrons as high-Q resonators for detecting meV dark photon dark matter. When the rest energy of the dark photon matches the energy splitting of the two lowest cyclotron levels, the first excited state of the electron cyclotron will be resonantly excited. A proof-of-principle measurement, carried out with one electron, demonstrates that the method is background free over a 7.
View Article and Find Full Text PDFWe propose and study a method of optical crosstalk suppression for silicon photomultipliers (SiPMs) using optical filters. We demonstrate that attaching absorptive visible bandpass filters to the SiPM can substantially reduce the optical crosstalk. Measurements suggest that the absorption of near infrared light is important to achieve this suppression.
View Article and Find Full Text PDFDetector backaction can be completely evaded when the state of a one-electron quantum cyclotron is detected, but it nonetheless significantly broadens the quantum-jump resonance line shapes from which the cyclotron frequency can be deduced. This limits the accuracy with which the electron magnetic moment can be determined to test the standard model's most precise prediction. A steady-state solution to a master equation, the first quantum calculation for the open quantum cyclotron system, illustrates a method to circumvent the detection backaction upon the measured frequency.
View Article and Find Full Text PDF