A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.
View Article and Find Full Text PDFBackground: Nusinersen and risdiplam are U.S. Food and Drug Administration (FDA)-approved treatments for spinal muscular atrophy (SMA).
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disorder. The pathogenesis of PD is unknown till now. The high-sensitivity C-reactive protein (CRP) is a non-specific biochemical marker of inflammation.
View Article and Find Full Text PDFCurrent photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is ubiquitous in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable the long lifetimes necessary to become financially acceptable. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells.
View Article and Find Full Text PDF