Publications by authors named "G G Kiselev"

Modern mental fatigue detection methods include many parameters for evaluation. For example, many researchers use human subjective evaluation or driving parameters to assess this human condition. Development of a method for detecting the functional state of mental fatigue is an extremely important task.

View Article and Find Full Text PDF

High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials.

View Article and Find Full Text PDF

Nanostructured drugs are being approved for clinical use, although there is a serious deficit of systematic studies of these materials. Data on toxicity of nanoparticles (NPs) can vary due to different methods of preparation, size, and shape. We investigated the toxicity against cultured human cells, the acute toxicity in mice, and the influence on conjugative transfer of antibiotic resistance genes of clinically relevant NPs such as TiO, ZrO, HfO, TaO, FeO, and AlOOH.

View Article and Find Full Text PDF

We describe rapid, label-free detection of Influenza A viruses using the first radial mode of oscillations of lead zirconate titanate (PZT) piezoelectric discs with a 2 mm radius and 100 µm thickness fabricated from a piezoelectric membrane. The discs are modified with a synthetic sialylglycopolymer receptor layer, and the coated discs are inserted in a flowing virus suspension. Label-free detection of the virus is achieved by monitoring the disc radial mode resonance frequency shift.

View Article and Find Full Text PDF

Spider silk is a natural material possessing unique properties such as biocompatibility, regenerative and antimicrobial activity, and biodegradability. It is broadly considered an attractive matrix for tissue regeneration applications. Optical monitoring and potential control over tissue regrowth are attractive tools for monitoring of this process.

View Article and Find Full Text PDF