Publications by authors named "G G Dalkiranis"

Microneedles are mainly used for pain-free drug administration and in biosensing for wearable systems. They are also promising for fields such as agronomy for precision farming, but their fabrication is not straightforward, often requiring expensive equipment and cleanroom protocols, being unsuitable for mass production. Here, we report a new and simple method for the scalable fabrication of all-inkjet-printed conductive microneedles based on silver nanoparticles (extensible to any other metallic nanoparticle ink) and a simple example of their application for monitoring the electrochemical properties of plants.

View Article and Find Full Text PDF
Article Synopsis
  • Ultraviolet light-emitting diodes (UV-LEDs) are a promising alternative to traditional mercury lamps for disinfecting water by inactivating microorganisms.
  • This study specifically examined the effectiveness of a bench-scale UVC-LED system at 280 nm on various pathogens, including E. coli, PhiX-174, MS2, and Cryptosporidium oocysts, under different water qualities.
  • Results showed that while microbiological reductions varied with exposure time and water quality, UVC-LED technology was generally effective in achieving significant reductions of bacteria and viruses, highlighting its potential for use in small water systems as recommended by the World Health Organization.
View Article and Find Full Text PDF

Thermoelectric materials capable of converting heat into electrical energy are used in sustainable electric generators, whose efficiency has been normally increased with incorporation of new materials with high figure of merit (ZT) values. Because the performance of these thermoelectric generators (TEGs) also depends on device geometry, in this study we employ the finite element method to determine optimized geometries for highly efficient miniaturized TEGs. We investigated devices with similar fill factors but with different thermoelectric leg geometries (filled and hollow).

View Article and Find Full Text PDF

Thermoelectricity (TE) is proving to be a promising way to harvest energy for small applications and to produce a new range of thermal sensors. Recently, several thermoelectric generators (TEGs) based on nanomaterials have been developed, outperforming the efficiencies of many previous bulk generators. Here, we presented the thermoelectric characterization at different temperatures (from 50 to 350 K) of the Si thin-film based on Phosphorous (n) and Boron (p) doped thermocouples that conform to a planar micro TEG.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF