Publications by authors named "G Fytas"

In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ∼L^{α}(α>0), but there is a long-standing debate on the value α. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius.

View Article and Find Full Text PDF

The response of soft materials to an imposed oscillatory stress is typically frequency dependent, with the most utilized frequency range falling in the range of 10-10 rad/s. In contrast to most conventional contact techniques for measuring material elasticity, like tensile or shear rheology and atomic force microscopy, or invasive techniques using probes, such as microrheology, Brillouin light spectroscopy (BLS) offers an optical, noncontact, label-free, submicron resolution and three-dimensional (3D) mapping approach to access the mechanical moduli at GHz frequencies. Currently, the correlation between the experimental viscoelastic (at lower frequencies) and elastic (at higher frequencies) moduli has fundamental and practical relevance, but remains unclear.

View Article and Find Full Text PDF

Polymer colloidal crystals (PCCs) have been widely explored as acoustic and optical metamaterials and as templates for nanolithography. However, fabrication impurities and fragility of the self-assembled structures are critical bottlenecks for the device's efficiency and applications. We have demonstrated that temperature-assisted pressure [ annealing results in the mechanical strengthening of PCCs, which improves with the annealing temperature.

View Article and Find Full Text PDF

Colloidal glasses (CGs) made of polymer (polymethylmethacrylate) nanoparticles are promising metamaterials for light and sound manipulation, but fabrication imperfections and fragility can limit their functionality and applications. Here, the vibrational mechanical modes of nanoparticles are probed to evaluate the nanomechanical and morphological properties of various CGs architectures. Utilizing the scanning micro-Brillouin light scattering (µ-BLS), the effective elastic constants and nanoparticles' sizes is determined as a function of position in a remote and non-destructive manner.

View Article and Find Full Text PDF

A series of novel hydroxamic acid derivatives was designed and synthesized, and their growth inhibitory activity against bloodstream form was evaluated. These compounds are based on conformationally constrained, lipophilic, spiro carbocyclic 2,6-diketopiperazine (2,6-DKP) scaffolds and bear a side pharmacophoric functionality that contains an acetohydroxamic acid moiety (CHCONHOH) linked with the imidic nitrogen atom of the 2,6-DKP ring via an acetamido portion [CHCON(R), R = H, CH]. Most of these analogues were active in the midnanomolar to low micromolar range against .

View Article and Find Full Text PDF