Publications by authors named "G Friedbacher"

The level of oxygen deficiency in high-voltage spinels of the composition LiNiMnO (LNMO) significantly influences the thermodynamic and kinetic properties of the material, ultimately affecting the cell performance of the corresponding lithium-ion batteries. This study presents a comprehensive defect chemical analysis of LNMO thin films with oxygen vacancy concentrations of 2.4% and 0.

View Article and Find Full Text PDF

Gas-phase electrophoresis on a nano-Electrospray Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) separates single-charged, native analytes according to the surface-dry particle size. A volatile electrolyte, often ammonium acetate, is a prerequisite for electrospraying. Over the years, nES GEMMA has demonstrated its unique capability to investigate (bio-)nanoparticle containing samples in respect to composition, analyte size, size distribution, and particle numbers.

View Article and Find Full Text PDF

Accelerating the oxygen reduction kinetics of solid oxide fuel cell (SOFC) cathodes is crucial to improve their efficiency and thus to provide the basis for an economically feasible application of intermediate temperature SOFCs. In this work, minor amounts of Pt were doped into lanthanum strontium ferrite (LSF) thin film electrodes to modulate the material's oxygen exchange performance. Surprisingly, Pt was found to be incorporated on the B-site of the perovskite electrode as non metallic Pt.

View Article and Find Full Text PDF

Antiplatelet and anticoagulant drugs are classified antithrombotic agents with the purpose to reduce blood clot formation. For a successful treatment of many known complex cardiovascular diseases driven by platelet and/or coagulation activity, the need of more than one antithrombotic agent is inevitable. However, combining drugs with different mechanisms of action enhances risk of bleeding.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based virus-like particles (VLPs) are thriving vectors of choice in the biopharmaceutical field of gene therapy. Here, a method to investigate purified AAV serotype 8 (AAV8) batches via a nanoelectrospray gas-phase mobility molecular analyzer (nES GEMMA), also known as an nES differential mobility analyzer, is presented. Indeed, due to AAV's double-digit nanometer scale, nES GEMMA is an excellently suited technique to determine the surface-dry particle size termed electrophoretic mobility diameter of such VLPs in their native state at atmospheric pressure and with particle-number-based detection.

View Article and Find Full Text PDF