Publications by authors named "G Fricke"

In the future, sensors mounted on uncrewed aerial systems (UASs) will play a critical role in increasing both the speed and safety of structural inspections. Environmental and safety concerns make structural inspections and maintenance challenging when conducted using traditional methods, especially for large structures. The methods developed and tested in the laboratory need to be tested in the field on real-size structures to identify their potential for full implementation.

View Article and Find Full Text PDF

In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent "grayness" blurs the theorized threshold defining life.

View Article and Find Full Text PDF

Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day CO and 5150 ± [730, 340] tons day SO-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea.

View Article and Find Full Text PDF

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data.

View Article and Find Full Text PDF

RuleBuilder is a tool for drawing graphs that can be represented by the BioNetGen language (BNGL), which is used to formulate mathematical, rule-based models of biochemical systems. BNGL provides an intuitive plain text, or string, representation of such systems, which is based on a graphical formalism. Reactions are defined in terms of graph-rewriting rules that specify the necessary intrinsic properties of the reactants, a transformation, and a rate law.

View Article and Find Full Text PDF