Publications by authors named "G Flandin"

Article Synopsis
  • The Brain Imaging Data Structure (BIDS) is a community-created standard for organizing neuroscience data and metadata, helping researchers manage various modalities efficiently.
  • The paper discusses the evolution of BIDS, including the guiding principles, extension mechanisms, and challenges faced during its development.
  • It also highlights key lessons learned from the BIDS project, aiming to inspire and inform researchers in other fields about effective data organization practices.
View Article and Find Full Text PDF

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.

View Article and Find Full Text PDF
Article Synopsis
  • The Brain Imaging Data Structure (BIDS) is a collaborative standard designed to organize various neuroscience data and metadata.
  • The paper details the history, principles, and mechanisms behind the development and expansion of BIDS, alongside the challenges it faces as it evolves.
  • It also shares lessons learned from the project to help researchers in other fields apply similar successful strategies.
View Article and Find Full Text PDF

Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.

View Article and Find Full Text PDF

Background: Epithelial-mesenchymal-transition (EMT) is an epigenetic-based mechanism contributing to the acquired treatment resistance against receptor tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) cells harboring epidermal growth factor receptor ()-mutations. Delineating the exact epigenetic and gene-expression alterations in EMT-associated EGFR TKI-resistance (EMT-E-TKI-R) is vital for improved diagnosis and treatment of NSCLC patients.

Methods: We characterized genome-wide changes in mRNA-expression, DNA-methylation and the histone-modification H3K36me3 in -mutated NSCLC HCC827 cells in result of acquired EMT-E-TKI-R.

View Article and Find Full Text PDF