Publications by authors named "G Fischerauer"

Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution.

View Article and Find Full Text PDF

Molding sand mixtures used in the foundry industry consist of various sands (quartz sands, chromite sands, etc.) and additives such as bentonite. The optimum control of the processes involved in using the mixtures and in their regeneration after the casting requires an efficient in-line monitoring method that is not available today.

View Article and Find Full Text PDF

Monitoring the nitrate concentration in soil is crucial to guide the use of nitrate-based fertilizers. This study presents the characteristics of an impedance sensor used to estimate the nitrate concentration in soil based on the sensitivity of the soil dielectric constant to ion conductivity and on electrical double layer effects at electrodes. The impedance of synthetic sandy soil samples with nitrate nitrogen concentrations ranging from 0 to 15 mg/L was measured at frequencies between 20 Hz and 5 kHz and noticeable conductance and susceptance effects were observed.

View Article and Find Full Text PDF

Self-adaptive vibration energy harvesters convert the kinetic energy from vibration sources into electrical energy and continuously adapt their resonance frequency to the vibration frequency. Only when the two frequencies match can the system harvest energy efficiently. The harvesting of vibration sources with a time-variant frequency therefore requires self-adaptive vibration harvesting systems without human intervention.

View Article and Find Full Text PDF

Vibration energy harvesters transform environmental vibration energy into usable electrical energy. The transformation is only possible because of a coupling between the mechanical part of the energy harvester and the electric circuit. This paper compares several measurement methods to determine the electromagnetic coupling coefficient.

View Article and Find Full Text PDF