Publications by authors named "G Fernandez-Rubio"

Aging is often associated with decline in brain processing power and neural predictive capabilities. To challenge this notion, we used magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to record the whole-brain activity of 39 older adults (over 60 years old) and 37 young adults (aged 18-25 years) during recognition of previously memorised and varied musical sequences. Results reveal that when recognising memorised sequences, the brain of older compared to young adults reshapes its functional organisation.

View Article and Find Full Text PDF

Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations.

View Article and Find Full Text PDF

Vividly imagining a song or a melody is a skill that many people accomplish with relatively little effort. However, we are only beginning to understand how the brain represents, holds, and manipulates these musical "thoughts". Here, we decoded perceived and imagined melodies from magnetoencephalography (MEG) brain data (N = 71) to characterize their neural representation.

View Article and Find Full Text PDF

Memory is a complex cognitive process composed of several subsystems, namely short- and long-term memory and working memory (WM). Previous research has shown that adequate interaction between subsystems is crucial for successful memory processes such as encoding, storage, and manipulation of information. However, few studies have investigated the relationship between different subsystems at the behavioral and neural levels.

View Article and Find Full Text PDF

Auditory recognition is a crucial cognitive process that relies on the organization of single elements over time. However, little is known about the spatiotemporal dynamics underlying the conscious recognition of auditory sequences varying in complexity. To study this, we asked 71 participants to learn and recognize simple tonal musical sequences and matched complex atonal sequences while their brain activity was recorded using magnetoencephalography (MEG).

View Article and Find Full Text PDF