Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein-ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks.
View Article and Find Full Text PDFThe steadily growing number of experimental G-protein-coupled receptor (GPCR) structures has revealed diverse locations of allosteric modulation, and yet few drugs target them. This gap highlights the need for a deeper understanding of allosteric modulation in GPCR drug discovery. The current work introduces a systematic annotation scheme to structurally classify GPCR binding sites based on receptor class, transmembrane helix contacts, and, for membrane-facing sites, membrane sublocation.
View Article and Find Full Text PDFβ-amyloid (Aβ) peptides form self-organizing fibrils in Alzheimer's disease. The biologically active, toxic Aβ25-35 fragment of the full-length Aβ-peptide forms a stable, oriented filament network on the mica surface with an epitaxial mechanism at the timescale of seconds. While many of the structural and dynamic features of the oriented Aβ25-35 fibrils have been investigated before, the β-strand arrangement of the fibrils and their exact orientation with respect to the mica lattice remained unknown.
View Article and Find Full Text PDFCovalent drugs might bear electrophiles to chemically modify their targets and have the potential to target previously undruggable proteins with high potency. Covalent binding of drug-size molecules includes a noncovalent recognition provided by secondary interactions and a chemical reaction leading to covalent complex formation. Optimization of their covalent mechanism of action should involve both types of interactions.
View Article and Find Full Text PDFPenicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations.
View Article and Find Full Text PDF