Publications by authors named "G Fells"

Diagnosis of the hereditary disorder alpha 1-antitrypsin (alpha 1AT) deficiency is critically dependent on quantification of serum levels of alpha 1AT, a 52-kDa antiprotease that serves to protect the lung from destruction by neutrophil elastase. Although the measurement of serum alpha 1AT levels is not difficult, there is no international standard for alpha 1AT, and investigators in the field recognize that widely used commercially available standards vary by as much as 50 percent. To establish accurate ranges for the common normal and deficient alpha 1AT phenotypes, the present study uses a purified alpha 1AT standard to quantify the alpha 1AT serum levels of 443 individuals with common normal and deficient alpha 1AT phenotypes, including MM, ZZ, SS, MZ, MS, and SZ.

View Article and Find Full Text PDF

The emphysema of alpha 1-antitrypsin (alpha 1AT) deficiency is conceptualized to result from insufficient alpha 1AT allowing neutrophil elastase to destroy lung parenchyma. In addition to the deficiency of alpha 1AT in these individuals resulting from mutations in the alpha 1AT gene, it is recognized that, for unknown reasons, there are also increased numbers of neutrophils in their lungs compared with normal individuals. With the knowledge that alveolar macrophages have surface receptors for neutrophil elastase, we hypothesized that the neutrophil accumulation in the lower respiratory tract in alpha 1AT deficiency may result, in part, from release of neutrophil chemotactic activity by alveolar macrophages as they bind uninhibited neutrophil elastase.

View Article and Find Full Text PDF

The increased risk of developing emphysema among individuals who smoke cigarettes and who have normal levels of alpha 1-antitrypsin (alpha 1AT) is hypothesized to result from a decrease in the antineutrophil elastase capacity of the lower respiratory tract alpha 1AT of smokers compared with nonsmokers. To evaluate this hypothesis we compared the time-dependent kinetics of the inhibition of neutrophil elastase by lung alpha 1AT from healthy, young cigarette smokers (n = 8) and nonsmokers (n = 12). alpha 1-antitrypsin was purified from lavage fluid using affinity and molecular sieve chromatography, and the association rate constant (k assoc) for neutrophil elastase quantified.

View Article and Find Full Text PDF

Secretory leukoprotease inhibitor (SLPI), a 12-kD nonglycosylated serine antiprotease with a high capacity for inhibiting neutrophil elastase (NE), is produced by cells of mucosal surfaces including the human lung. The molar concentrations of SLPI in total respiratory tract epithelial lining fluid (ELF) were 56 +/- 10% that of alpha 1-antitrypsin, suggesting SLPI may be more important for the anti-NE protection of the pulmonary epithelial surface than previously thought. However, evaluation demonstrated that SLPI in respiratory ELF was only one-third functional.

View Article and Find Full Text PDF

In a variety of lung diseases the respiratory epithelial surface must contend with an increased burden of neutrophil elastase (NE). One candidate for augmenting epithelial anti-NE protection is the secretory leukoprotease inhibitor (SLPI). In vitro evaluation demonstrated that 96 +/- 1% of the recombinant SLPI (rSLPI) molecules were capable of inhibiting NE, with an association rate constant of 7.

View Article and Find Full Text PDF