We describe our efforts to identify analogs of thumb pocket 1 HCV NS5B inhibitor 1 (aza-analog of BI 207524) with improved plasma to liver partitioning and a predicted human half-life consistent with achieving a strong antiviral effect at a reasonable dose in HCV-infected patients. Compounds 3 and 7 were identified that met these criteria but exhibited off-target promiscuity in an in vitro pharmacology screen and in vivo toxicity in rats. High lipophilicity in this class was found to correlate with increased probability for promiscuous behavior and toxicity.
View Article and Find Full Text PDFThe development of interferon-free regimens for the treatment of chronic HCV infection constitutes a preferred option that is expected in the future to provide patients with improved efficacy, better tolerability, and reduced risk for emergence of drug-resistant virus. We have pursued non-nucleoside NS5B polymerase allosteric inhibitors as combination partners with other direct acting antivirals (DAAs) having a complementary mechanism of action. Herein, we describe the discovery of a potent follow-up compound (BI 207524, 27) to the first thumb pocket 1 NS5B inhibitor to demonstrate antiviral activity in genotype 1 HCV infected patients, BILB 1941 (1).
View Article and Find Full Text PDFOptimization efforts on the anthranilic acid-based Thumb Pocket 2 HCV NS5B polymerase inhibitors 1 and 2 resulted in the identification of multiple structural elements that contributed to improved cell culture potency. The additive effect of these elements resulted in compound 46, an inhibitor with enzymatic (IC50) and cell culture (EC50) potencies of less than 100 nanomolar.
View Article and Find Full Text PDFWe describe the structure-based design of a novel lead chemotype that binds to thumb pocket 2 of HCV NS5B polymerase and inhibits cell-based gt1 subgenomic reporter replicons at sub-micromolar concentrations (EC50<200nM). This new class of potent thumb pocket 2 inhibitors features a 1H-quinazolin-4-one scaffold derived from hybridization of a previously reported, low affinity thiazolone chemotype with our recently described anthranilic acid series. Guided by X-ray structural information, a key NS5B-ligand interaction involving the carboxylate group of anthranilic acid based inhibitors was replaced by a neutral two-point hydrogen bonding interaction between the quinazolinone scaffold and the protein backbone.
View Article and Find Full Text PDFWe describe here the design, synthesis and biological evaluation of antiviral compounds acting against human rhinovirus (HRV). A series of aminothiazoles demonstrated pan-activity against the HRV genotypes screened and productive structure-activity relationships. A comprehensive investigational library was designed and performed allowing the identification of potent compounds with lower molecular weight and improved ADME profile.
View Article and Find Full Text PDF