The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5 cm×5 cm×5 cm TeO_{2} crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in ^{130}Te. Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter.
View Article and Find Full Text PDFWe report on the results obtained with the global CUPID-0 background model, which combines the data collected in the two measurement campaigns for a total exposure of 8.82 kg×yr of ^{82}Se. We identify with improved precision the background sources within the 3 MeV energy region, where neutrinoless double β decay of ^{82}Se and ^{100}Mo is expected, making more solid the foundations for the background budget of the next-generation CUPID experiment.
View Article and Find Full Text PDFIntroduction: Data regarding echocardiographic findings during follow-up of asymptomatic or pauci-symptomatic coronavirus disease 2019 (COVID-19) are scarce in pediatric patients. The aim of the present study is to assess post-COVID-19 sequelae through echocardiography in children who have experienced mild SARS-CoV-2.
Methods: This single-center, retrospective, observational study enrolled a cohort of 133 pediatric outpatients, born between 2005 and 2022, with a history of asymptomatic or paucisymptomatic SARS-CoV-2 infection, who underwent transthoracic echocardiographic (TTE) evaluation at an outpatient pediatric clinic in Northern Italy.
The Cryogenic Underground Observatory for Rare Events (CUORE) at Laboratori Nazionali del Gran Sasso of INFN in Italy is an experiment searching for neutrinoless double beta (0νββ) decay. Its main goal is to investigate this decay in ^{130}Te, but its ton-scale mass and low background make CUORE sensitive to other rare processes as well. In this Letter, we present our first results on the search for 0νββ decay of ^{128}Te, the Te isotope with the second highest natural isotopic abundance.
View Article and Find Full Text PDF