Publications by authors named "G Fairley"

The increasing popularity of the dihydrouracil motif in cereblon (CRBN) recruiting proteolysis-targeting chimeras (PROTACs) has necessitated the development of a facile, cost-effective, and high-yielding method for its introduction into molecules. To that end, we disclose herein an N-1 selective Pd-catalyzed cross-coupling of dihydrouracil with aryl electrophiles to provide access to medicinally relevant scaffolds in a single step. This approach exhibits excellent functional group tolerance and broad applicability to an abundance of (hetero)aryl halides and phenol derivatives and utilizes readily available catalyst/ligand systems.

View Article and Find Full Text PDF

Inhibition of Mer and Axl kinases has been implicated as a potential way to improve the efficacy of current immuno-oncology therapeutics by restoring the innate immune response in the tumor microenvironment. Highly selective dual Mer/Axl kinase inhibitors are required to validate this hypothesis. Starting from hits from a DNA-encoded library screen, we optimized an imidazo[1,2-]pyridine series using structure-based compound design to improve potency and reduce lipophilicity, resulting in a highly selective probe compound .

View Article and Find Full Text PDF

Herein we describe our efforts using a late stage functionalization together with more traditional synthetic approaches to generate fluorinated analogues of the clinical candidate AZD9833. The effects of the addition of fluorine on the lipophilicity, permeability, and metabolism are discussed. Many of these changes were tolerated in terms of pharmacology and resulted in high quality molecules which reached advanced stages of profiling in the testing cascade.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers optimized a palladium-catalyzed Buchwald-Hartwig amination reaction for lenalidomide-derived aryl bromides using high throughput experimentation (HTE).
  • They evaluated the optimized conditions with various alkyl- and aryl- amines and functionalized aryl bromides to broaden the substrate scope.
  • This method enables the creation of new cereblon-based bifunctional proteolysis targeting chimeras, simplifying the process and increasing yields.
View Article and Find Full Text PDF

The RAS/MAPK pathway is a major driver of oncogenesis and is dysregulated in approximately 30% of human cancers, primarily by mutations in the BRAF or RAS genes. The extracellular-signal-regulated kinases (ERK1 and ERK2) serve as central nodes within this pathway. The feasibility of targeting the RAS/MAPK pathway has been demonstrated by the clinical responses observed through the use of BRAF and MEK inhibitors in BRAF V600E/K metastatic melanoma; however, resistance frequently develops.

View Article and Find Full Text PDF